跳转到主内容

非常抱歉,我们不完全支持您的浏览器。如果您可以选择,请升级到较新版本或使用 Mozilla Firefox、Microsoft Edge、Google Chrome 或 Safari 14 或更高版本。如果您无法进行此操作且需要支持,请将您的反馈发送给我们。

全新设计的官网为您带来全新体验,期待您的反馈 在新的选项卡/窗口中打开

Elsevier
通过我们出版

Profile

Chang-Beom Eom

CE

Chang-Beom Eom

University of Wisconsin-Madison, USA

The research of our group has spanned many areas of heteroepitaxy of complex oxides and nanostructure fabrication, from thin film synthesis to characterization and device application of various novel materials.Many new electronic, magnetic and optical devices require sophisticated thin film structures or multilayers, which demand that the thickness be controlled down to one unit cell; other devices may need lateral dimensions to be patterned down to nanometer sizes. Complex oxide materials possess an enormous range of electrical, optical, and magnetic properties. For instance, insulators, high quality metals, dielectrics, ferroelectrics, piezoelectrics, semiconductors, ferromagnetics, transparent conductors, colossal magnetoresistance materials, superconductors, and nonlinear optic materials have all been produced using oxide materials. Therefore, thin films and heterostructures of oxide materials have great potential for novel device applications. A major challenge is to prepare these materials with epitaxial thin film form with atomic layer control and integrate them so that these properties can be fully utilized in electronic devices.Our interest includes the synthesis and characterization of epitaxial oxide heterostructures and heterointerfaces uniquely suited for oxide nanoelectronics piezoelectric heterostructures for hyper-active MEMS/NEMS, ferroelectric and multiferroics for magnetoelectric and photovoltaic devices.Our interest also includes the epitaxial growth of ferronictide superconducting thin films and 2-dimensional electron gas at oxide hetero-interfaces.